题目内容
【题目】一个正多边形的每个内角都比与它相邻的外角的3倍还多20°,则此正多边形是_____ 边形,共有_____ 条对角线.
【答案】九 27
【解析】
设多边形的一个外角为α,则与其相邻的内角等于3α+20°,根据内角与其相邻的外角的和是180度列出方程,求出α的值,再由多边形的外角和为360°,求出此多边形的边数为360°÷α;依据n边形的对角线条数为:n(n-3),即可得到结果.
解:设多边形的一个外角为α,则与其相邻的内角等于3α+20°,
由题意,得(3α+20)+α=180°,
解得:α=40°.
即多边形的每个外角为40°.
又∵多边形的外角和为360°,
∴多边形的外角个数=.
∴多边形的边数为9;
∵n边形的对角线条数为:n(n-3),
∴当n=9时,
n(n-3)=×9×6=27;
故答案为:九;27.
练习册系列答案
相关题目
【题目】下表是中国电信两种“套餐”计费方式.(月基本费固定收,主叫不超过主叫时间,流量不超上网流量不再收取额外费用费,主叫超时和上网超流量部分加收超时费和超流量费)
月基本费/元 | 主叫通话/分钟 | 上网流量/MB | 接听 | 主叫超时(元/分钟) | 超出流量(元/MB) | |
套餐1 | 49 | 200 | 500 | 免费 | 0.20 | 0.3 |
套餐2 | 69 | 250 | 600 | 免费 | 0.15 | 0.2 |
(1)6月小王主叫通话时间220分钟,上网流量800MB.按套餐1计费需 元,按套餐2计费需 元;
若他按套餐2计费需129元,主叫通话时间为240分钟,则他上网使用了 MB流量;
(2)若上网流量为540MB,是否存在某主叫通话时间(分钟),按套餐1和套餐2的计费相等?若存在,请求出的值;若不存在,请说明理由.