题目内容

如图,的内接三角形,为 上一点,延长至点,使

(1)求证:
(2)若,求证:
证明见解析.

试题分析:(1)根据同弧上的圆周角相等,得∠CBA=∠CDE,则∠ACB=∠ECD,可证明△ACE≌△BCD,则AE=BD;
(2)根据已知条件得,∠CED=∠CDE=45°,则DE=CD,从而证出结论.
试题解析:(1)在△ABC中,∠CAB=∠CBA.
在△ECD中,∠E=∠CDE.
∵∠CBA=∠CDE,(同弧上的圆周角相等),
∴∠E=∠CDE=∠CAB=∠CBA,
∵∠E+∠ECD+∠EDC=180°,∠CAB+∠ACB+∠ABC=180°,
∴∠ACB=∠ECD,
∴∠ACB﹣∠ACD=∠ECD﹣∠ACD.
∴∠ACE=∠BCD,
在△ACE和△BCD中,∠ACE=∠BCD;CE=CD;AC=BC,
∴△ACE≌△BCD.
∴AE=BD;
(2)若AC⊥BC,∵∠ACB=∠ECD.
∴∠ECD=90°,
∴∠CED=∠CDE=45°,
∴DE=CD,
又∵AD+BD=AD+EA=ED,
∴AD+BD=CD.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网