题目内容
【题目】如图,点A.B.C分别是⊙O上的点,∠B=60°,AC=3,CD是⊙O的直径,P是CD延长线上的一点,且AP=AC.
(1)求证:AP是⊙O的切线;
(2)求PD的长.
【答案】(1)相切;(2)
【解析】试题分析:(1)连接OA,利用等腰三角形的性质和角的关系求出∠OAP=90°,得出OA⊥AP即可;(2)连接AD,△ACD中利用tan30°求出AD=,然后证明∠P=∠PAD得出PD=AD=.
试题解析:(1)连接OA.
∵∠B=60°,
∴∠AOC=2∠B=120°,
又∵OA=OC,
∴∠ACP=∠CAO=30°,
∴∠AOP=60°,
∵AP=AC,
∴∠P=∠ACP=30°,
∴∠OAP=90°,
∴OA⊥AP,
∴AP是⊙O的切线,
(2)连接AD.
∵CD是⊙O的直径,
∴∠CAD=90°,
∴AD=AC×tan30°=3×=,
∵∠ADC=∠B=60°,
∴∠PAD=∠ADC﹣∠P=60°﹣30°,
∴∠P=∠PAD,
∴PD=AD=.
练习册系列答案
相关题目