题目内容
【题目】A、B、C为数轴上的三点,动点A、B同时从原点出发,动点A每秒运动x个单位,动点B每秒运动y个单位,且动点A运动到的位置对应的数记为a,动点B运动到的位置对应的数记为b,定点C对应的数为8.
(1)若2秒后,a、b满足|a+8|+|b﹣2|=0,则x= ,y= .并请在数轴上标出A、B两点的位置.
(2)若动点A、B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后使得|a|=|b|,使得z= .
(3)若动点A、B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒,点A与点C之间的距离表示为AC,点B与点C之间的距离表示为BC,点A与点B之间的距离为AB,且AC+BC=1.5AB,则t= .
【答案】(1)4,1,图详见解析;(2)或;(3)或.
【解析】
(1)∵|a+8|+(b﹣2)2=0,
∴a+8=0,b﹣2=0,即a=﹣8,b=2,
则x=|﹣8|÷2=4,y=2÷2=1,
在数轴上标出A、B两点的位置如下图所示:
故答案为:4,1;
(2)∵动点A、B在(1)运动后的位置上保持原来的速度,且同时向正方向运动z秒后,
∴a=﹣8+4z,b=2+z.
∵|a|=|b|,
∴|﹣8+4z|=|2+z|,
∴﹣8+4z+2+z=0或﹣8+4z=2+z
解得:z=或z=.
故答案为:或;
(3)若动点A、B在(1)运动后的位置上都以每秒2个单位向正方向运动继续运动t秒后,
则点A表示:﹣8+2t,点B表示:2+2t,点C表示:8,
∴AC=|﹣8+2t﹣8|=|2t﹣16|,BC=|2+2t﹣8|=|2t﹣6|,AB=|﹣8+2t﹣(2+2t)|=10.
∵AC+BC=1.5AB,
∴|2t﹣16|+|2t﹣6|=1.5×10,
分三种情况讨论:
①当t≤3时,
16-2t+6-2t=15,
解得:t=;
②当3<t≤8时,
16-2t+2t-6=10≠15
方程无解;
③当t>8时,
2t-16+2t-6=15
解得:t=.
综上所述:t=或t=.
故答案为:或 .
【题目】探究函数y=x+(x>0)与y=x+(x>0,a>0)的相关性质.
(1)小聪同学对函数y=x+(x>0)进行了如下列表、描点,请你帮他完成连线的步骤;观察图象可得它的最小值为 ,它的另一条性质为 ;
x | … | 1 | 2 | 3 | … | |||||
y | … | 2 | … |
(2)请用配方法求函数y=x+(x>0)的最小值;
(3)猜想函数y=x+(x>0,a>0)的最小值为 .