题目内容
【题目】如图,在△ABC中,AB=AC,以AB为直径作⊙O,交BC边于边D,交AC边于点G,过D作⊙O的切线EF,交AB的延长线于点F,交AC于点E.
(1)求证:BD=CD;
(2)若AE=6,BF=4,求⊙O的半径.
【答案】(1)证明见解析;
(2)4.
【解析】
试题分析:(1)连接AD,根据等腰三角形三线合一即可证明.
(2)设⊙O的半径为R,则FO=4+R,FA=4+2R,OD=R,连接OD,由△FOD∽△FAE,得列出方程即可解决问题.
试题解析:(1)连接AD,∵AB是直径,∴∠ADB=90°,
∵AB=AC,AD⊥BC,∴BD=DC.
(2)设⊙O的半径为R,则FO=4+R,FA=4+2R,OD=R,连接OD、
∵AB=AC,
∴∠ABC=∠C,
∵OB=OD,
∴∠ABC=∠ODB,
∴∠ODB=∠C,
∴OD∥AC,
∴△FOD∽△FAE,
∴,
∴,
整理得R2﹣R﹣12=0,
∴R=4或(﹣3舍弃).
∴⊙O的半径为4.
练习册系列答案
相关题目