题目内容

【题目】如图,直线与双曲线交于点A.将直线向右平移6个单位后,与双曲线交于点B,与x轴交于点C,若,则k的值为(  )

A. 12 B. 14 C. 18 D. 24

【答案】A

【解析】

试题作AD⊥x轴于D点,BE⊥x轴于E,根据平移得到C点坐标为(60),再证明Rt△AOD∽Rt△BCE,利用相似比得到OD=2CEAD=2BE,设CE=t,则OD=2tOE=6+t,然后表示A点坐标(2t),B点坐标(6+t),再根据反比例函数图象上点的坐标特征得到2t=6+t,解得t1=0(舍去),t2=2,于是A点坐标为(43),最后把A点坐标代入y=即可确定k的值.

试题解析:作AD⊥x轴于D点,BE⊥x轴于E,如图,

直线y=向右平移6个单位得到直线OC

∴C点坐标为(60),

∵OA∥BC

∴∠AOD=∠BCE

∴Rt△AOD∽Rt△BCE

∴OD=2CEAD=2BE

CE=t,则OD=2tOE=6+t

x=2t时,y=,即A点坐标为(2t

∴BE=

∴B点坐标为(6+t),

∴2t=6+t

解得t1=0(舍去),t2=2

∴A点坐标为(43),

A点坐标为(43)代入y=k=3×4=12

故选A

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网