题目内容

【题目】若一个等腰三角形的三边长均满足方程x2-6x+8=0,则此三角形的周长为______

【答案】61210

【解析】

由等腰三角形的底和腰是方程的两根,解此一元二次方程即可求得等腰三角形的腰与底边的长,注意需要分当2是等腰三角形的腰时与当4是等腰三角形的腰时讨论,然后根据三角形周长的求解方法求解即可.

解:∵

解得:
∵等腰三角形的底和腰是方程的两根,
∴当2是等腰三角形的腰时,224,不能组成三角形,舍去;
4是等腰三角形的腰时,244,则这个三角形的周长为24410
当边长为2的等边三角形,得出这个三角形的周长为2226
当边长为4的等边三角形,得出这个三角形的周长为44412
∴这个三角形的周长为61210
故答案为:6或12或10

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网