题目内容
分析:旋转中心为点A,C、C′为对应点,可知AC=AC′,又∠CAC′=90°,根据△CAC′的特性解题.
解答:解:由旋转的性质可知,AC=AC′,
又∠CAC′=90°,可知△CAC′为等腰直角三角形,
所以,∠CC′A=45°.
∵∠CC′B′+∠ACC′=∠AB′C′=∠B=60°,
∴∠CC′B′=15°.
故选D.
又∠CAC′=90°,可知△CAC′为等腰直角三角形,
所以,∠CC′A=45°.
∵∠CC′B′+∠ACC′=∠AB′C′=∠B=60°,
∴∠CC′B′=15°.
故选D.
点评:本题考查了旋转的性质,旋转的性质:对应点与旋转中心的连线相等,夹角是旋转角.
练习册系列答案
相关题目