题目内容
解方程:
(1)x2-2x-1=0.
(2)x2+2x-1=0.
(3)x2+x-1=0.
(4)x2+3x-1=0.
(5)x(x+2)=1.
(6)5(x-3)2=125.
(7)x2+2=2
x.
(8)3(x2-5)=4x.
(9)3x2+(x-2)=0.
(10)(2x-1)(x+3)=4.
(11)x2-3x-4=0.
(12)x2-3x-18=0.
(1)x2-2x-1=0.
(2)x2+2x-1=0.
(3)x2+x-1=0.
(4)x2+3x-1=0.
(5)x(x+2)=1.
(6)5(x-3)2=125.
(7)x2+2=2
3 |
(8)3(x2-5)=4x.
(9)3x2+(x-2)=0.
(10)(2x-1)(x+3)=4.
(11)x2-3x-4=0.
(12)x2-3x-18=0.
(1)x2-2x=1,
x2-2x+1=2,
(x-1)2=2,
x-1=±
,
∴x1=1+
,x2=1-
.
(2)x2+2x=1,
x2+2x+1=2,
(x+1)2=2,
x+1=±
,
∴x1=-1+
,x2=-1-
.
(3)△=1-4×(-1)=5,
x=
,
∴x1=
,x2=
.
(4)△=9-4×(-1)=13,
x=
,
∴x1=
,x2=
.
(5)x2+2x=1,
x2+2x+1=2,
(x+1)2=2,
x+1=±
,
∴x1=-1+
,x2=-1-
.
(6)(x-3)2=25,
x-3=±5,
∴x1=8,x2=-2.
(7)x2-2
x+2=0,
△=12-4×2=4,
x=
=
±1,
∴x1=
+1,x2=
-1.
(8)3(x2-5)=4x,
3x2-4x-15=0,
(3x+5)(x-3)=0,
∴x1=-
,x2=3.
(9)3x2+(x-2)=0,
3x2+x-2=0
(3x-2)(x+1)=0,
∴x1=
,x2=-1.
(10)(2x-1)(x+3)=4,
整理为2x2+5x-7=0,
(2x+7)(x-1)=0,
∴x1=-
,x2=-1.
(11)x2-3x-4=0,
(x-4)(x+1)=0,
∴x1=4,x2=-1.
(12)x2-3x-18=0,
(x+3)(x-6)=0,
∴x1=-3,x2=6.
x2-2x+1=2,
(x-1)2=2,
x-1=±
2 |
∴x1=1+
2 |
2 |
(2)x2+2x=1,
x2+2x+1=2,
(x+1)2=2,
x+1=±
2 |
∴x1=-1+
2 |
2 |
(3)△=1-4×(-1)=5,
x=
-1±
| ||
2 |
∴x1=
-1+
| ||
2 |
-1-
| ||
2 |
(4)△=9-4×(-1)=13,
x=
-3±
| ||
2 |
∴x1=
-3+
| ||
2 |
-3-
| ||
2 |
(5)x2+2x=1,
x2+2x+1=2,
(x+1)2=2,
x+1=±
2 |
∴x1=-1+
2 |
2 |
(6)(x-3)2=25,
x-3=±5,
∴x1=8,x2=-2.
(7)x2-2
3 |
△=12-4×2=4,
x=
2
| ||
2 |
3 |
∴x1=
3 |
3 |
(8)3(x2-5)=4x,
3x2-4x-15=0,
(3x+5)(x-3)=0,
∴x1=-
5 |
3 |
(9)3x2+(x-2)=0,
3x2+x-2=0
(3x-2)(x+1)=0,
∴x1=
2 |
3 |
(10)(2x-1)(x+3)=4,
整理为2x2+5x-7=0,
(2x+7)(x-1)=0,
∴x1=-
7 |
2 |
(11)x2-3x-4=0,
(x-4)(x+1)=0,
∴x1=4,x2=-1.
(12)x2-3x-18=0,
(x+3)(x-6)=0,
∴x1=-3,x2=6.
练习册系列答案
相关题目