题目内容
【题目】如图,在正方形ABCD中,E是对角线BD上一点,连接AE,CE.
(1)求证:AE=CE;
(2)若BC=,BE=6,求tan∠BAE的值.
【答案】(1)见解析;(2)3.
【解析】
(1)通过SAS证明△ADE≌△CDE即可得;
(2)过点E作AB的垂线相交于点P,由△BPE为等腰直角三角形求出BP=EP=,从而得到AP,在直角△APE中由正切的定义求解即可.
解:(1)证明:在正方形ABCD中 AD=CD, ∠ADE=∠CDE=45°
在△ADE和△CDE中
∴△ADE≌△CDE (SAS),
∴AE=CE
(2)如图所示,过点E作AB的垂线相交于点P,
易得 △BPE为等腰直角三角形,
∵BE=6,由勾股定理可知BP=EP=
而AB=BC=
∴AP=AB-BP=
∴.
【题目】为拓宽学生视野,我市某中学决定组织部分师生去庐山西海开展研学旅行活动,在参加此次活动的师生中,若每位老师带17个学生,还剩12个学生没人带;若每位老师带18个学生,就有一位老师少带4个学生.为了安全,既要保证所有师生都有车坐,又要保证每辆客车上至少要有2名老师.现有甲、乙两种大客车,它们的载客量和租金如表所示.
甲种客车 | 乙种客车 | |
载客量/(人/辆) | 30 | 42 |
租金/(元/辆) | 300 | 400 |
(1)参加此次研学旅行活动的老师和学生各有多少人?租用客车总数为多少辆?
(2)设租用x辆乙种客车,租车总费用为w元,请写出w与x之间的函数关系式;
(3)在(2)的条件下,学校计划此次研学旅行活动的租车总费用不超过3100元,租用乙种客车不少5辆,你能得出哪几种不同的租车方案?其中哪种租车方案最省钱?请说明理由.
【题目】2019年永州市初中体育水平测试进行改革,增加了自选项目,学生可以从篮球运球、足球运球、排球向上垫球三项中必须选一项,另外从一分钟跳绳、仰卧起坐(女)或引体向上(男)、原地正面掷实心球、立定跳远中必须选一项.现对永州市某校的选考项目情况进行调查,对调查结果进行了分析统计并制作了两幅统计图:
项目 | 篮球 | 足球 | 排球 | |||
性别 | 男 | 女 | 男 | 女 | 男 | 女 |
人数 | 30 | 10 | 24 | 12 | 6 | 28 |
平均得分 | 8 | 7 | 8.5 | 6 | 9 | 10 |
(1)补全条形统计图;
(2)求抽查的这些男生的体育测试平均分;
(3)若该校准备从这次体育测试成绩好的学生中选出10名参加全市运动会.现在有19名学生报名,小明是这19名同学之一,小明在知道自己这次成绩后还需知道这19名学生成绩的______,就能知道自己能不能参加市运动会.
A.平均数B.众数C.中位数D.方差