题目内容
【题目】如图,平行四边形ABCD的对角线相交于点O,且AD>AB,过点O作OE⊥AC交AD于点E,连接CE.若平行四边形ABCD的周长为20,则△CDE的周长是( )
A. 10B. 11C. 12D. 13
【答案】A
【解析】
由平行四边形ABCD的对角线相交于点O,OE⊥AC,根据线段垂直平分线的性质,可得AE=CE,又AB+BC=AD+CD=20,继而可得△CDE的周长等于AD+CD.
∵四边形ABCD是平行四边形,
∴OA=OC,AB=CD,AD=BC,
∵平行四边形ABCD的周长为20,
∴AD+CD=10,
∵OE⊥AC,
∴AE=CE,
∴△CDE的周长为:CD+CE+DE=CD+CE+AE=AD+CD=10.
故选A.
练习册系列答案
相关题目
【题目】前不久在台湾抗震救灾中,某地将甲、乙两个仓库的粮食全部转移到A、B两个仓库.甲库有粮食100吨,乙库有粮食80吨,而A库的容量为70吨,B库的容量为110吨.从甲、乙两库到A,B两库的路程和运费如下表:
路程(km) | 运费(元/吨km) | |||
甲库 | 乙库 | 甲库 | 乙库 | |
A库 | 20 | 15 | 12 | 12 |
B库 | 25 | 20 | 10 | 8 |
(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)函数关系式.
(2)当甲、乙两库各运往A、B两库多少吨粮食时,总运费最省,最省的总运费是多少?