题目内容
【题目】一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,共用t小时;一辆货车同时从甲地驶往乙地,到达乙地后停止.两车同时出发,匀速行驶.设轿车行驶的时间为x(h),两车到甲地的距离为y(km),两车行驶过程中y与x之间的函数图象如图.
(1)求轿车从乙地返回甲地时的速度和t的值;
(2)求轿车从乙地返回甲地时y与x之间的函数关系式,并写出自变量x的取值范围;
(3)直接写出轿车从乙地返回甲地时与货车相遇的时间.
【答案】(1)5(2)y=﹣120x+600(3≤x≤5)(3)
【解析】
(1)利用行驶的速度变化进而得出时间变化,进而得出t的值;
(2)利用待定系数法求一次函数解析式进而利用图象得出自变量x的取值范围;
(3)利用函数图象交点求法得出其交点横坐标,进而得出答案.
解:(1)∵一辆轿车从甲地驶往乙地,到达乙地后返回甲地,速度是原来的1.5倍,
∴行驶的时间分别为:=3小时,则=2小时,
∴t=3+2=5;
∴轿车从乙地返回甲地时的速度是:=120(km/h);
(2)∵t=5,∴此点坐标为:(5,0),
设轿车从乙地返回甲地时y与x之间的函数关系式为:y=kx+b,
∴,
解得:,
∴轿车从乙地返回甲地时y与x之间的函数关系式为:y=﹣120x+600(3≤x≤5);
(3)设货车行驶图象解析式为:y=ax,
则240=4a,
解得:a=60,
∴货车行驶图象解析式为:y=60x,
∴当两图象相交则:60x=﹣120x+600,
解得:x=,故﹣3=(小时),
∴轿车从乙地返回甲地时与货车相遇的时间小时.
练习册系列答案
相关题目