题目内容
【题目】如图,在等边三角形ABC中,BD是AC边上的中线,延长BC到E,使CE=CD.
问:
(1)DB与DE相等吗?
(2)把BD是AC边上的中线改成什么条件,还能得到同样的结论?
【答案】(1)相等,理由见解析;(2)把BD是AC边上的中线改为BD是∠ABC的平分线或BD是AC边上的高,根据等边三角形“三线合一”的性质,还能得出DB=DE.
【解析】
试题分析:(1)由CD=CE,得到∠E=∠EDC,由于∠ACB=60°,求得∠E=30°,于是得到∠E=∠DBC,根据等腰三角形的判定即可得到结论;
(2)根据等边三角形“三线合一”的性质,即可得到结论.
解:(1)相等,
理由:∵CD=CE,
∴∠E=∠EDC,
又∵∠ACB=60°,
∴∠E=30°,
又∵∠DBC=30°,
∴∠E=∠DBC,
∴DB=DE;
(2)把BD是AC边上的中线改为BD是∠ABC的平分线或BD是AC边上的高,根据等边三角形“三线合一”的性质,还能得出DB=DE.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目