题目内容
【题目】如图 1,在矩形 ABCD 中,AB=8,AD=10,E 是 CD 边上一点,连接 AE,将矩形 ABCD 沿 AE 折叠,顶点 D 恰好落在 BC 边上点 F 处,延长 AE 交 BC 的延长线于点G.
(1)求线段 CE 的长;
(2)如图 2,M,N 分别是线段 AG,DG 上的动点(与端点不重合),且∠DMN=∠DAM, 设 DN=x.
①求证四边形 AFGD 为菱形;
②是否存在这样的点 N,使△DMN 是直角三角形?若存在,请求出 x 的值;若不存在, 请说明理由.
【答案】(1)CE=3;(2)①见解析;②或2.
【解析】
(1)由翻折可知:AD=AF=10.DE=EF,设EC=x,则DE=EF=8x.在Rt△ECF中,利用勾股定理构建方程即可解决问题.
(2)①由△ADE∽△GCE计算出GC的长度,再证明四边形AFGD是平行四边形,根据一组邻边相等的平行四边形的菱形即可证明;
②若△DMN 是直角三角形,则有两种情况,一是当∠MDN=90°时,二是当∠DNM=90°时,分别利用相似三角形的性质以及锐角三角函数的定义即可计算得出.
解:(1)∵四边形ABCD是矩形,
∴AD=BC=10,AB=CD=8,
∴∠B=∠BCD=90°,
由翻折可知:AD=AF=10.DE=EF,设CE=x,则DE=EF=8x.
在Rt△ABF中,BF=,
∴CF=BCBF=106=4,
在Rt△EFC中,则有:(8x)2=x2+42,
∴x=3,
∴CE=3.
(2)①证明:∵四边形ABCD是矩形,
∴AD∥BC
∴△ADE∽△GCE,
∴,
∵AD=10,CE=3,DE=5,
∴,
∴GC=6,
由(1)可得:CF=4,
∴GF=6+4=10,
∴四边形AFGD是平行四边形,
又∵AD=AF,
∴平行四边形AFGD是菱形.
②∵∠DMN=∠DAM,
∴若△DMN 是直角三角形,则有两种情况,
当∠MDN=90°时,
∵AD=GD,
∴∠DAG=∠DGA
又∵∠ADE=∠GDM=90°,
∴△ADE≌△GDM(ASA)
∴DM=DE=5,
又∵∠DMN=∠DAM,∠ADE=∠MDN=90°,
∴△ADE∽△MDN
∴,即,
∴;
当∠DNM=90°时,则∠MDN+∠DMN=90°,
又∵∠DMN=∠DAM,∠DAG=∠DGA,
∴∠DMN=∠DGA,
∴∠MDN+∠DGA=90°,
∴∠DMG=90°,
∵sin∠DAE=,
∵,
∴,
∴DM=,
∵∠DMN=∠DAM
∴sin∠DMN=sin∠DAM
∴,即
解得:x=2,
综上所述:或2.