题目内容
【题目】如图,菱形ABCD中,∠B=60°,AB=2,E,F分别是BC、CD的中点,连接AE、EF,则△AEF的周长为_____.
【答案】3
【解析】分析:根据菱形的性质和等边三角形的判定方法得,三角形ABC是等边三角形.则AE⊥BC,根据勾股定理求得AE的长,同理得到EF的长,根据已知可推出△AEF是等边三角形,从而得到其周长是3.
详解:连接AC,
∵四边形ABCD是菱形,
∴AB=BC,
∵∠B=60°,
∴△ABC为等边三角形,
∴AC=AB=AD=CD,
∴∠CAD=60°,
∴∠BAD=120°,
∵E为BC的中点,
∴AE⊥BC,∠EAC=30°,
∴AE=,
同理:AF=,
∵AE=AF,∠CAF=30°
∴∠EAF=60°,
∴△AEF是等边三角形,
∴EF=,
∴△AEF的周长为3.
故答案为:3.
练习册系列答案
相关题目