题目内容
【题目】如图,已知等腰Rt△ABC,∠ACB=90°,CA=CB,以BC为边向外作等边△CBA,连接AD,过点C作∠ACB的角平分线与AD交于点E,连接BE.
(1)若AE=2,求CE的长度;
(2)以AB为边向下作△AFB,∠AFB=60°,连接FE,求证:FA+FB= FE.
【答案】
(1)解:延长CE交AB于G,
∵△BAC是等腰直角三角形,CE平分∠ACB,
∴CG⊥AB,
∴∠AGC=90°,
∵CA=CB,∠ACB=90°,
∴∠CAB=45°,
∴△CAG是等腰直角三角形,
∵△BCD是等边三角形,
∴BC=CD=AC,∠BCD=60°,
∴∠CAD=∠CDA,
∴∠ACD=∠ACB+∠BCD=150°,
∴∠CAD=∠CDA=15°,
∴∠EAB=∠CAB﹣∠CAD=30°,
在Rt△AEG中,∠EAG=30°,AE=2,
∴AE= ,EG=1,
∵CG=AG= ,
∴CE=CG﹣EG= ﹣1.
(2)解:延长FB到H,使得BH=AF,连接EH.作EI⊥BF于I.
由(1)可知:AC=BC,CE平分∠ACB,
∴∠ACE=∠BCE,
∵CE=CE,
∴△ACE≌△BCE,
∴AE=BE,
∴∠EAB=∠EBC=30°,
在△AFB中,∠AFB=60°,
∴∠FAB+∠FBA=120°,
∴∠FAE=∠EAB+∠FAB=30°+∠FAB,
∠EBH=180°﹣∠EBA﹣∠ABF=150°﹣(120°﹣∠ABF)=30°+∠FAB,
∴∠EBH=∠FAE,
∴△AFE≌△BHE,
∴∠AFE=∠BHE,EF=EH,
∴∠EFB=∠EBH=∠AFE=30°,
∵EI⊥FH,
∴EI=IH,
在Rt△FEI中,∠EFI=30°,
∴FI= FE,
∴FH=BH+FB= FE,
∴FA+FB= FE.
【解析】(1)延长CE交AB于G,首先判断出△CAG是等腰直角三角形,然后找到∠EAB=∠CAB﹣∠CAD=30°,分别求出CG,EG即可解决问题;
(2)延长FB到H,使得BH=AF,连接EH.作EI⊥BF于I.由△ACE≌△BCE,推出AE=BE,推出∠EAB=∠EBC=30°,由△AFE≌△BHE,推出∠AFE=∠BHE,EF=EH,可得∠EFB=∠EBH=∠AFE=30°,又EI⊥FH,故在Rt△FEI中,∠EFI=30°,从而得出FI= FE,可得FA+FB= FE.
【考点精析】本题主要考查了等腰直角三角形和等边三角形的性质的相关知识点,需要掌握等腰直角三角形是两条直角边相等的直角三角形;等腰直角三角形的两个底角相等且等于45°;等边三角形的三个角都相等并且每个角都是60°才能正确解答此题.