题目内容
【题目】如图1,在矩形ABCD中,点A(1,1),B(3,1),C(3,2),反比例函数y= (x>0)的图象经过点D,且与AB相交于点E,
(1)求反比例函数的解析式;
(2)过点C、E作直线,求直线CE的解析式;
(3)如图2,将矩形ABCD沿直线CE平移,使得点C与点E重合,求线段BD扫过的面积.
【答案】(1)反比例函数的解析式为y=; (2)直线CE的解析式为y=x-1;(3) 3.
【解析】分析:(1)由矩形的性质求得点D的坐标,即可求得k;(2)根据反比例函数的解析式求点E的坐标,用待定系数法求直线CE的解析式;(3)BD扫过的面积是一个平行四边形,它的面积=2S△BB′D′.
详解:(1)由题意得AD=CB=1,故点D的坐标为(1,2),
∵函数y=的图象经过点D(1,2),
∴2=.∴m=2,
∴反比例函数的解析式为y=;
(2)当y=1时,1=.∴x=2,∴E(2,1),
设直线CE的解析式为y=kx+b,根据题意得
解得
∴直线CE的解析式为y=x-1;
(3)∵矩形ABCD沿直线CE平移,使得点C与点E重合,点D(0,1),B'(2,0),
S四边形BDD′B′=2S△BB′D′=2××3×1=3.
【题目】为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.
收集数据:随机抽取甲乙两所学校的20名学生的数学成绩进行分析:
甲 | 91 | 89 | 77 | 86 | 71 | 31 | 97 | 93 | 72 | 91 |
81 | 92 | 85 | 85 | 95 | 88 | 88 | 90 | 44 | 91 | |
乙 | 84 | 93 | 66 | 69 | 76 | 87 | 77 | 82 | 85 | 88 |
90 | 88 | 67 | 88 | 91 | 96 | 68 | 97 | 59 | 88 |
整理、描述数据:按如下数据段整理、描述这两组数据
分段 学校 | 30≤x≤39 | 40≤x≤49 | 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤100 |
甲 | 1 | 1 | 0 | 0 | 3 | 7 | 8 |
乙 |
|
|
|
|
|
|
|
分析数据:两组数据的平均数、中位数、众数、方差如下表:
统计量 学校 | 平均数 | 中位数 | 众数 | 方差 |
甲 | 81.85 | 88 | 91 | 268.43 |
乙 | 81.95 | 86 | m | 115.25 |
经统计,表格中m的值是 .
得出结论:
a若甲学校有400名初二学生,估计这次考试成绩80分以上人数为 .
b可以推断出 学校学生的数学水平较高,理由为 .(至少从两个不同的角度说明推断的合理性)