题目内容
【题目】某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:
A型利润(元/件) | B型利润(元/件) | |
甲店 | 180 | 150 |
乙店 | 120 | 110 |
(1)设分配给甲店A型产品x件,这家公司卖出这100件产品的总利润为W(元),求W关于x的函数关系式,并写出x的取值范围;
(2)若要求总利润超过14960元,有多少种不同分配方案?请列出具体方案;
(3)为了促销,公司决定仅对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润,甲店的B型产品以及乙店的A,B型产品的每件利润不变,该公司如何设计分配方案,使总利润达到最大?
【答案】(1)W=20x+14200, 10≤x≤40;(2)有两种不同的分配方案::①x=39时,甲店A型39件,B型31件,乙店A型1件,B型29件;②x=40时,甲店A型40件,B型30件,乙店A型0件,B型30件;(3)详见解析.
【解析】
(1)根据题意得,甲店B型产品有(70﹣x)件,乙店A型有(40﹣x)件,B型有(x﹣10)件,,那么总利润等于每件相应商品的利润×相应件数之和;根据各个店面的商品的数量为非负数可得自变量的取值范围;
(2)让(1)中的代数式大于14960,结合(1)中自变量的取值可得相应的分配方案;
(3)根据让利后A型产品的每件利润仍高于甲店B型产品的每件利润可得a的取值,结合(1)得到相应的总利润,根据a的不同取值得到利润的函数应得到的最大值的方案即可.
解:(1)由题意得,甲店B型产品有(70﹣x)件,乙店A型有(40﹣x)件,B型有(x﹣10)件,
则W=180x+150(70﹣x)+120(40﹣x)+110(x﹣10)=20x+14200.
由,
解得10≤x≤40;
(2)由W=20x+14200>14960,
解得x>38.
故38<x≤40,x=39,40.
则有两种不同的分配方案.
①x=39时,甲店A型39件,B型31件,乙店A型1件,B型29件;
②x=40时,甲店A型40件,B型30件,乙店A型0件,B型30件;
(3)依题意:W=(180﹣a)x+150(70﹣x)+120(40﹣x)+110(x﹣10)=(20﹣a)x+14200.
①当0<a<20时,20﹣a>0,W随x增大而增大,
∴x=40,W有最大值,
即甲店A型40件,B型30件,乙店A型0件,B型30件,能使总利润达到最大;
②当a=20时,10≤x≤40,W=16800,符合题意的各种方案,使总利润都一样;
③当20<a<30时,20﹣a<0,W随x增大而减小,
∴x=10,W有最大值,
即甲店A型10件,B型60件,乙店A型30件,B型0件,能使总利润达到最大.
【题目】随着中央电视台《朗读者》节目的播出,“朗读”为越来越多的同学所喜爱,西宁市某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别:.积极参与,.一定参与,.可以参与,.不参与.根据调查结果制作了如下不完整的统计表和统计图.
学生参与“朗读”的态度统计表
类别 | 人数 | 所占百分比 |
18 | ||
20 | ||
4 | ||
合计 |
请你根据以上信息,解答下列问题:
(1)______,______,并将条形统计图补充完整;
(2)该校有1500名学生,如果“不参与”的人数不超过150人时,“朗读”活动可以顺利开展,通过计算分析这次活动能否顺利开展?
(3)“朗读”活动中,九年级一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率,并列出所有等可能的结果.