题目内容

【题目】某产品生产车间有工人10.已知每名工人每天可生产甲种产品12个或乙种产品10,且每生产一个甲种产品可获得利润100,每生产一个乙种产品可获得利润180.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.

(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;

(2)若要使此车间每天获取利润为14400,要派多少名工人去生产甲种产品?

(3)若要使此车间每天获取利润不低于15600,你认为至少要派多少名工人去生产乙种产品才合适?

【答案】解:(1)根据题意得:y=12x×100+1010﹣x×180=﹣600x+18000

2)当y=14400时,有14400=﹣600x+18000,解得:x=6

要派6名工人去生产甲种产品。

3)根据题意可得,y≥15600,即﹣600x+18000≥15600,解得:x≤4

∴10﹣x≥6

至少要派6名工人去生产乙种产品才合适。

【解析】试题分析:(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可。

2)根据每天获取利润为14400元,则y=14400,求出即可。

3)根据每天获取利润不低于15600元即y≥15600,求出即可。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网