题目内容
【题目】如图,长方形ABCD中,∠DAB=∠B=∠C=∠D=90°,AD=BC=9,AB=CD=15.点E为射线DC上的一个动点,△ADE与△AD′E关于直线AE对称,当△AD′B为直角三角形时,求DE的长度
【答案】DE=3或27.
【解析】
分两种情况:点E在DC线段上,点E为DC延长线上的一点,进一步分析探讨得出答案即可.
如图1,
∵折叠,∴△AD′E≌△ADE,∴∠AD′E=∠D=90°,AD′=AD,
∵∠AD′B=90°,∴B、D′、E三点共线,
∵∠ABD′=∠BEC,∠AD′B=∠C=90°,AD′=BC,
∴ABD′≌△BEC,∴BE=AB=15,
∵BD′===12,
∴DE=D′E=15﹣12=3;
如图2,
∵∠ABD″+∠CBE=∠ABD″+∠BAD″=90°,∴∠CBE=∠BAD″,
在△ABD″和△BEC中,
,
∴△ABD″≌△BEC,
∴BE=AB=15,∴DE=D″E=15+12=27.
综上所知,DE=3或27.
练习册系列答案
相关题目