题目内容
【题目】在平面直角坐标系中,已知函数y1=x2+ax+1,y2=x2+bx+2,y3=x2+cx+4,其中a,b,c是正实数,且满足b2=ac.设函数y1,y2,y3的图象与x轴的交点个数分别为M1,M2,M3,( )
A.若M1=2,M2=2,则M3=0B.若M1=1,M2=0,则M3=0
C.若M1=0,M2=2,则M3=0D.若M1=0,M2=0,则M3=0
【答案】B
【解析】
选项B正确,利用判别式的性质证明即可.
解:选项B正确.
理由:∵M1=1,
∴a2﹣4=0,
∵a是正实数,
∴a=2,
∵b2=ac,
∴c=b2,
∵M2=0,
∴b2﹣8<0,
∴b2<8,
对于y3=x2+cx+4,
则有△=c2﹣16=b2﹣16=(b2﹣64)<0,
∴M3=0,
∴选项B正确,
故选:B.
练习册系列答案
相关题目