题目内容

【题目】在第一象限内作射线OC,与x轴的夹角为60°,在射线OC上取一点A,过点A作AH⊥x轴于点H,在抛物线y=x2(x>0)上取一点P,在y轴上取一点Q,使得以P,O,Q为顶点的三角形与△AOH全等,则符合条件的点A的坐标是

【答案】( ,3)或( )或( )或(2,2
【解析】解:①如图1,当∠POQ=∠OAH=30°,若以P,O,Q为顶点的三角形与△AOH全等,那么A、P重合;
∵∠AOH=60°,
∴直线OA:y= x,
联立抛物线的解析式得:
解得:
故A( ,3);
②当∠POQ=∠AOH=60°,此时△POQ≌△AOH,
易知∠POH=30°,则直线y= x,联立抛物线的解析式,
得:
解得:
故P( ),那么A( );
③当∠OPQ=90°,∠POQ=∠AOH=60°时,此时△QOP≌△AOH;
易知∠POH=30°,则直线y= x,联立抛物线的解析式,
得:
解得:
故P( ),
∴OP= = ,QP=
∴OH=OP= ,AH=QP=
故A( );
④当∠OPQ=90°,∠POQ=∠OAH=30°,此时△OQP≌△AOH;
此时直线y= x,联立抛物线的解析式,
得:
解得:
∴P( ,3),
∴QP=2,OP=2
∴OH=QP=2,AH=OP=2
故A(2,2 ).
综上可知:符合条件的点A有四个,分别为:( ,3)或( )或( )或(2,2 ).
故答案为:( ,3)或( )或( )或(2,2 ).
由于两三角形的对应边不能确定,故应分四种情况进行讨论:
①∠POQ=∠OAH=30°,此时A、P重合,可联立直线OA和抛物线的解析式,即可得A点坐标,由三角形的面积公式即可得出结论;
②∠POQ=∠AOH=60°,此时∠POH=30°,即直线OP:y= x,联立抛物线的解析式可得P点坐标,进而可求出OQ、PQ的长,由于△POQ≌△AOH,那么OH=OQ、AH=PQ,由此得到点A的坐标,由三角形的面积公式即可得出结论;
③当∠OPQ=90°,∠POQ=∠AOH=60°时,此时△QOP≌△AOH,得到点A的坐标,由三角形的面积公式即可得出结论;
④当∠OPQ=90°,∠POQ=∠OAH=30°,此时△OQP≌△AOH,得到点A的坐标,由三角形的面积公式即可得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网