题目内容

【题目】如图,在△ABC中,∠ACB=90°,点D是AB的中点,过点D作DE⊥AC于点E, 延长DE到点F,使得EF=DE,连接AF,CF.

(1)根据题意,补全图形;
(2)求证:四边形ADCF是菱形;
(3)若AB=8,∠BAC=30°,求菱形ADCF的面积.

【答案】
(1)解:如图所示.


(2)证明:∵DE⊥AC,

∴∠AED=∠ACB=90°,

∴DE∥BC,

∵AD=DB,

∴AE=EC,∵ED=EF,

∴四边形ADCF是平行四边形,

∵AC⊥DF,

∴四边形ADCF是菱形.


(3)解:在Rt△ACB中,∵AB=8,∠BAC=30°,

∴BC= AB=4,AC= BC=4

∵AE=EC,AD=DB,

∴DE= BC=2,

∴DF=2DE=4,

∴S菱形ADCF= ACDF= ×4 ×4=8


【解析】(1)根据题意画出图形即可;(2)首先证明AE=CE,DE=EF,推出四边形ADCF是平行四边形,再根据AC⊥DF,推出四边形ADCF是菱形;(3)求出菱形的对角线的长即可解决问题.
【考点精析】解答此题的关键在于理解直角三角形斜边上的中线的相关知识,掌握直角三角形斜边上的中线等于斜边的一半.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网