题目内容

精英家教网如图,AB为⊙O直径,CD为弦,AD与BC交于点E,∠CEA=α,则
S△CDE
S△ABE
的值等于(  )
A、cosα
B、sin2α
C、cos2α
D、tan2α
分析:很显然△CDE和△ABE是相似三角形(根据圆周角定理,可找出两组对应角相等),因此它们的面积比等于相似比的平方,而cosα正好等于两三角形的相似比,由此可得出所求的结论.
解答:精英家教网解:连接AC,则∠ACE=90°.
∴cosα=
CE
AE

∵∠ECD=∠EAB,∠CDE=∠ABE,
∴△ECD∽△EAB,
S△CDE
  S△ABE
=(
CE
AE
2=cos2α.
故选C.
点评:本题考查锐角三角函数的概念与运用:在直角三角形中,正弦等于对比斜;余弦等于邻比斜;正切等于对比邻.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网