题目内容
【题目】如图,菱形纸片的边长为翻折使点两点重合在对角线上一点分别是折痕.设.
(1)证明:;
(2)当时,六边形周长的值是否会发生改变,请说明理由;
(3)当时,六边形的面积可能等于吗?如果能,求此时的值;如果不能,请说明理由.
【答案】(1)见解析;(2)不变,见解析;(3)能,或
【解析】
(1)由折叠的性质得到BE=EP,BF=PF,得到BE=BF,根据菱形的性质得到AB∥CD∥FG,BC∥EH∥AD,于是得到结论;
(2)由菱形的性质得到BE=BF,AE=FC,推出△ABC是等边三角形,求得∠B=∠D=60°,得到∠B=∠D=60°,于是得到结论;
(3)记AC与BD交于点O,得到∠ABD=30°,解直角三角形得到AO=1,BO=,求得S四边形ABCD=2,当六边形AEFCHG的面积等于时,得到S△BEF+S△DGH=,设GH与BD交于点M,求得GM=x,根据三角形的面积列方程即可得到结论.
解:折叠后落在上,
平分
,
四边形为菱形,同理四边形为菱形,
四边形为平行四边形,
.
不变.
理由如下:由得
四边形为菱形,
为等边三角
,
为定值.
记与交于点.
当六边形的面积为时,
由得
记与交于点
,
同理
即
化简得
解得,
∴当或时,六边形的面积为.
练习册系列答案
相关题目