题目内容
【题目】如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c经过点A,B.
(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为线段OA上一个动点,过点M垂直于x轴的直线与直线AB和抛物线分别交于点P、N.
①试用含m的代数式表示线段PN的长;
②求线段PN的最大值.
【答案】(1)B(0,2),y=﹣x2+x+2;(2)①PN=﹣(0≤m≤3);②m=时,线段PN有最大值为3.
【解析】
(1)把A点坐标代入直线解析式可求得c,则可求得B点坐标,由A、B的坐标,利用待定系数法可求得抛物线解析式;
(2)①M(m,0),则P(m,),N(m,﹣),即可求出PN的长;
②根据二次函数的性质可得线段PN的最大值.
解:(1)∵y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,
∴0=﹣2+c,解得c=2,
∴B(0,2),
∵抛物线y=﹣x2+bx+c经过点A,B,
∴,解得,
∴抛物线解析式为y=﹣x2+x+2;
(2)①M(m,0),则P(m,),N(m,﹣),
∴PN==﹣(0≤m≤3);
②∵PN=﹣=,
∴m=时,线段PN有最大值为3.
练习册系列答案
相关题目