题目内容
【题目】已知抛物线y=x2+bx﹣3经过点A(1,0),顶点为点M.
(1)求抛物线的表达式及顶点M的坐标;
(2)求∠OAM的正弦值.
【答案】(1)M的坐标为(﹣1,﹣4);(2).
【解析】
(1)把A坐标代入抛物线解析式求出b的值,确定出抛物线表达式,并求出顶点坐标即可;
(2)根据(1)确定出抛物线对称轴,求出抛物线与x轴的交点B坐标,根据题意得到三角形AMB为直角三角形,由MB与AB的长,利用勾股定理求出AM的长,再利用锐角三角函数定义求出所求即可.
解:(1)由题意,得1+b﹣3=0,
解这个方程,得,b=2,
所以,这个抛物线的表达式是y=x2+2x﹣3,
所以y=(x+1)2﹣4,
则顶点M的坐标为(﹣1,﹣4);
(2)由(1)得:这个抛物线的对称轴是直线x=﹣1,
设直线x=-1与x轴的交点为点B,
则点B的坐标为(﹣1,0),且∠MBA=90°,
在Rt△ABM中,MB=4,AB=2,
由勾股定理得:AM2=MB2+AB2=16+4=20,即AM=2,
所以sin∠OAM==.
练习册系列答案
相关题目