题目内容
【题目】解方程:
(1)x2﹣6x﹣16=0
(2)(x﹣3)2=3x(x﹣3)
(3)(x+3)(x﹣2)=50
(4)(2x+1)2+3(2x+1)+2=0.
【答案】
(1)解:原方程变形为(x﹣8)(x+2)=0
x﹣8=0或x+2=0
∴x1=8,x2=﹣2
(2)解:(x﹣3)2=3x(x﹣3),
(x﹣3)(1﹣3x)=0,
则x﹣3=0或1﹣3x=0,
∴x1=3,x2=
(3)解:(x+3)(x﹣2)=50,
x2+x﹣56=0,
(x﹣7)(x+8)=0,
则x﹣7=0或x+8=0,
∴x1=7,x2=﹣8.
(4)解:设2x+1=t,则
t2+3t+2=0,
(t+1)2+(t+2)=0.
t=﹣1或t=﹣2,
故2x+1=﹣1或2x+1=﹣2,
∴x1=﹣1,x2=﹣1.5
【解析】(1)解此一元二次方程选择因式分解法最简单,因为﹣16=﹣8×2,﹣6=﹣8+2,所以x2﹣6x﹣16=(x﹣8)(x+2),这样即达到了降次的目的.(2)先移项,然后利用提取公因式对等式的左边进行因式分解,再来解方程即可;(3)先把原方程转化为一般式方程,然后利用因式分解法解方程;(4)利用换元法解方程.
【考点精析】解答此题的关键在于理解因式分解法的相关知识,掌握已知未知先分离,因式分解是其次.调整系数等互反,和差积套恒等式.完全平方等常数,间接配方显优势.
练习册系列答案
相关题目