题目内容
如图,四边形ABCD是梯形,sin∠OAD=tan∠OBC=
,PC是抛物线的对称轴,且P(3,-3).
(1)求抛物线的函数表达式;
(2)求点D的坐标;
(3)求直线AD的函数表达式;
(4)PD与AD垂直吗?
2 |
3 |
(1)求抛物线的函数表达式;
(2)求点D的坐标;
(3)求直线AD的函数表达式;
(4)PD与AD垂直吗?
(1)根据图象可得出抛物线经过点O(0,0)和顶点坐标为P(3,-3),
故可得出解析式为:y=a(x-3) 2-3,
将(0,0)代入得出:a=
,
故抛物线解析式为:y=
(x-3) 2-3=
x2-2x;
(2)∵PC是抛物线的对称轴,且P(3,-3),
∴BM=3,
∵tan∠OBC=
=
,
∴CM=2,
∴点D的纵坐标为2.
2=
x2-2x,
解得x1=3+
(不合题意舍去),x2=3-
,
∴D(3-
,2).
(3)过点D作DN⊥x轴于点N,
∵DN=2,sin∠OAD=
=
,
∴AD=3,
∴AN=
.
∴A点坐标为:(3-
-
,0),
把A,D的坐标代入y=kx+b,得:
,
解得:
,
即y=
x+2+2
-
;
(4)∵CD=NO+OM=
-3+3=
,CP=CM+PM=3+2=5,
∵tan∠DPC=
=
,
tan∠DAN=
=
,
∴
≠
,
∴∠CPD≠∠DAN,
∵∠CPD=NDP,
∴∠PDN≠∠DAN,
∵∠DAN+∠ADN=90°,
∴∠ADN+∠NDP≠90°,
∴PD与AD不垂直.
故可得出解析式为:y=a(x-3) 2-3,
将(0,0)代入得出:a=
1 |
3 |
故抛物线解析式为:y=
1 |
3 |
1 |
3 |
(2)∵PC是抛物线的对称轴,且P(3,-3),
∴BM=3,
∵tan∠OBC=
CM |
BM |
2 |
3 |
∴CM=2,
∴点D的纵坐标为2.
2=
1 |
3 |
解得x1=3+
15 |
15 |
∴D(3-
15 |
(3)过点D作DN⊥x轴于点N,
∵DN=2,sin∠OAD=
DN |
AD |
2 |
3 |
∴AD=3,
∴AN=
5 |
∴A点坐标为:(3-
5 |
15 |
把A,D的坐标代入y=kx+b,得:
|
解得:
|
即y=
2
| ||
5 |
3 |
6
| ||
5 |
(4)∵CD=NO+OM=
15 |
15 |
∵tan∠DPC=
CD |
PC |
| ||
5 |
tan∠DAN=
DN |
AN |
2 | ||
|
∴
| ||
5 |
2 | ||
|
∴∠CPD≠∠DAN,
∵∠CPD=NDP,
∴∠PDN≠∠DAN,
∵∠DAN+∠ADN=90°,
∴∠ADN+∠NDP≠90°,
∴PD与AD不垂直.
练习册系列答案
相关题目