题目内容
【题目】如图,点P(t,0)(t>0)是x轴正半轴上的一点,是以原点为圆心,半径为1的 圆,且A(﹣1,0),B(0,1),点M是 上的一个动点,连结PM,作直角△MPM1 , 并使得∠MPM1=90°,∠PMM1=60°,我们称点M1为点M的对应点.
(1)设点A和点B的对应点为A1和B1 , 当t=1时,求A1的坐标;B1的坐标 .
(2)当P是x轴正半轴上的任意一点时,点M从点A运动至点B,求M1的运动路径长 .
【答案】
(1)(1,2 );(1+ , )
(2)
【解析】解:(1)如图1,
当t=1时,则AP=2,A1P⊥AP,
∵∠PAA1=60°,
∴PA1=2 ,
∴A1(1,2 ),
BP=OP= ,∠BPO=45°,
∴∠B1PC=∠PBO=90°﹣∠BPO=45°,PC=B1C,
∵∠B1BP=60°,
∴PB1= ,
∴PC=B1C= ,
∴B1(1+ , ),
所以答案是;(1,2 ),(1+ , );(2)当M在A点时,PM=1+t,PM1=(1+t) ,点M从点A运动至点B,设∠APB=n°,则PM1也旋转n°,
∴M1的运动路径长= ,
∵ 的长= = = ,
∴M1的运动路径长= .
所以答案是: .
【题目】某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核.甲、乙、丙各项得分如下表:
笔试 | 面试 | 体能 | |
甲 | 83 | 79 | 90 |
乙 | 85 | 80 | 75 |
丙 | 80 | 90 | 73 |
(1)根据三项得分的平均分,从高到低确定三名应聘者的排名顺序.
(2)该公司规定:笔试,面试、体能得分分别不得低于80分,80分,70分,并按60%,30%,10%的比例计入总分.根据规定,请你说明谁将被录用.
【题目】如图,ABCD中,AB=3cm,AD=6cm,∠ADC的角平分线DE交BC于点E,交AC于点F,CG⊥DE,垂足为G,DG= cm,则EF的长为( )
A.2cm
B. cm
C.1cm
D. cm
【题目】为进一步缓解城市交通压力,义乌市政府推出公共自行车,公共自行车在任何一个网店都能实现通租通还,某校学生小明统计了周六校门口停车网点各时段的借、还自行车数,以及停车点整点时刻的自行车总数(称为存量)情况,表格中x=1时的y的值表示8:00点时的存量,x=2时的y值表示9:00点时的存量…以此类推,他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.
时段 | x | 还车数 | 借车数 | 存量y |
7:00﹣8:00 | 1 | 7 | 5 | 15 |
8:00﹣9:00 | 2 | 8 | 7 | n |
… | … | … | … | … |
根据所给图表信息,解决下列问题:
(1)m= , 解释m的实际意义:;
(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;
(3)已知10:00﹣11:00这个时段的借车数比还车数的一半还要多2,求此时段的借车数.