题目内容
【题目】在一节数学实践活动课上,老师拿出三个边长都为5cm 的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如图所示:
(1)通过计算(结果保留根号与π).
(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为
(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为
(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为
(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.
【答案】(1) ; ; ;(2)
【解析】试题分析:(1)(Ⅰ)观察图形可知:图①能盖住三个正方形所需的圆形硬纸板最小直径=三个正方形组成的矩形的对角线长,利用勾股定理可求出结果;(Ⅱ)图②中圆形硬纸板的半径是正方形的对角线长,利用勾股定理可求出结果;(Ⅲ)图③中圆形硬纸板的直径是正方形的对角线长的2倍,利用勾股定理可求出结果;(2)把三个正方形摆成“品”字形时,形硬纸板的直径最小,根据勾股定理解答即可.
试题解析:(1)(Ⅰ)观察图形可知:图①能盖住三个正方形所需的圆形硬纸板最小直径=三个正方形组成的矩形的对角线长=;(Ⅱ)图②中圆形硬纸板的半径=正方形的对角线长=,所以直径=;(Ⅲ)图③中圆形硬纸板的直径=正方形的对角线长的2倍=;
(2)如图④为盖住三个正方形时直径最小的放置方法
连接OB,ON,延长OH交AB于点P,则OP⊥AB,P为AB中点设OG=x,则OP=8-x
则有:,
解得:x=
则ON=,∴直径为.