题目内容
【题目】如果水位升高4m时水位变化记作+4m,那么水位下降7m记作_____m.
【答案】-7
【解析】解:水位升高4m时水位变化记作+4m,那么水位下降7m记作﹣7m.故答案为:﹣7.
【题目】下列计算正确的是( )A.a2a3=a6B.a6÷a3=a2C.(﹣2a2)3=﹣8a6D.4x3﹣3x2=1
【题目】抛物线y=x2﹣6x+5的顶点坐标为( )A.(3,﹣4)B.(3,4)C.(﹣3,﹣4)D.(﹣3,4)
【题目】把下列各式分解因式:
(1)x(x-y)2-2(y-x)2 (2)(x2+4)2-16x2
【题目】已知 a b 3 , c d 2 ,则b c a d 为( )
A. 1B. 5C. 5D. 1
【题目】已知,点P是Rt△ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.
(1)如图1,当点P与点Q重合时,AE与BF的位置关系是________,QE与QF的数量关系是________.
(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明.
(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.
【题目】网络购物无疑已被越来越多的人所接受,对人们生活的影响不断加深.李先生是淘宝店主之一,进了一批服装,每件成本为50元,如果按每件60元出售,可销售800件.如果每件提价1元出售,其销售量将减少20件.如果李先生的网店销售这批服装要获利12000元,并且投入尽量少,那么这种服装售价应为多少元? 该网店进多少件这种服装?
【题目】在一节数学实践活动课上,老师拿出三个边长都为5cm 的正方形硬纸板,他向同学们提出了这样一个问题:若将三个正方形纸板不重叠地放在桌面上,用一个圆形硬纸板将其盖住,这样的圆形硬纸板的最小直径应有多大?问题提出后,同学们经过讨论,大家觉得本题实际上就是求将三个正方形硬纸板无重叠地适当放置,圆形硬纸板能盖住时的最小直径.老师将同学们讨论过程中探索出的三种不同摆放类型的图形画在黑板上,如图所示:
(1)通过计算(结果保留根号与π).
(Ⅰ)图①能盖住三个正方形所需的圆形硬纸板最小直径应为
(Ⅱ)图②能盖住三个正方形所需的圆形硬纸板最小直径为
(Ⅲ)图③能盖住三个正方形所需的圆形硬纸板最小直径为
(2)其实上面三种放置方法所需的圆形硬纸板的直径都不是最小的,请你画出用圆形硬纸板盖住三个正方形时直径最小的放置方法,(只要画出示意图,不要求说明理由),并求出此时圆形硬纸板的直径.
【题目】平面直角坐标系中,有一Rt△ABC,且A(﹣1,3),B(﹣3,﹣1),C(﹣3,3),已知△A1AC1是由△ABC旋转得到的.
(1)请写出旋转中心的坐标是 ,旋转角是 度;
(2)以(1)中的旋转中心为中心,分别画出△A1AC1顺时针旋转90°、180°的三角形.