题目内容
【题目】如图所示,在某海域,一艘指挥船在处收到渔船在处发出的求救信号,经确定,遇险抛锚的渔船所在的处位于处的南偏西45°方向上,且海里;指挥船搜索发现,在处的南偏西60°方向上有一艘海监船,恰好位于处的正西方向.于是命令海监船前往搜救,已知海监船的航行速度为30海里/小时,问渔船在处需要等待多长时间才能得到海监船的救援?(参考数据:、、结果精确到0.1小时)
【答案】1.4小时
【解析】
延长AB交南北轴于点D,则AB⊥CD于点D,通过解直角三角形BDC和ADC,求出BD、CD和AD的长,继而求出AB的长,从而可以解决问题.
解:因为A在B的正西方,延长AB交南北轴于点D,则AB⊥CD于点D
∵∠BCD=45°,BD⊥CD
∴BD=CD
在Rt△BDC中,∵,BC=80海里
即,解得海里
∴海里
在Rt△ADC中,∵
即,解得海里
∵AB=AD-BD
∴海里
∴渔船在B处需要等待的时间为小时
∴渔船在B处大约需等待1.4小时.
练习册系列答案
相关题目
【题目】为宣传6月6日世界海洋日,某校九年级举行了主题为“珍惜海洋资源,保护海洋生物多样性”的知识竞赛活动.为了解全年级500名学生此次竞赛成绩的情况,随机抽取了部分参赛学生的成绩,整理并绘制出如下不完整的统计表和统计图(如图).请根据图表信息解答以下问题:
知识竞赛成绩分组统计表
组别 | 分数/分 | 频数 |
A | 60≤x<70 | a |
B | 70≤x<80 | 10 |
C | 80≤x<90 | 14 |
D | 90≤x≤100 | 18 |
(1)本次调查一共随机抽取了 名参赛学生的成绩;
(2)表1中a= ;
(3)所抽取的参赛学生的成绩的中位数落在的“组别”是 ;
(4)请你估计,该校九年级竞赛成绩达到80分以上(含80分)的学生约有 人.