题目内容
【题目】如图,在平面直角坐标系中,一次函数 y=nx+2(n≠0)的图像与反比例函数 y (m≠0)在第一象限内的图像交于点 A,与 x 轴交于点 B,线段 OA=5,C 为 x 轴正半轴上一点,且 sin AOC .
(1)求一次函数和反比例函数的解析式;
(2)求△ AOB 的面积;
(3)请直接写出不等式 nx 2 的解.
【答案】(1)y=x+2(2)6(3)x<﹣6或0<x<3
【解析】
(1)过A点作AD⊥x轴于点D,根据已知的∠AOC的正弦值以及OA的长,利用三角形函数的定义求出AD的长,再利用勾股定理求出OD的长,即可得到点A的坐标,把点A的坐标分别代入到反比例函数和一次函数的解析式中即可确定出两函数的解析式;
(2)根据x轴上点的特征,令一次函数的y=0,求出x的值,确定出点B的坐标,得到线段OB的长,利用三角形的面积公式即可求出三角形AOB的面积;
(3)根据图示可知,不等式nx≤﹣2的解集.
(1)过A点作AD⊥x轴于点D.
∵sin∠AOC==,OA=5,∴AD=4.在Rt△AOD中,由勾股定理得:DO=3.
∵点A在第一象限,∴点A的坐标为(3,4),将A的坐标为(3,4)代入y=,得m=3×4=12,∴该反比例函数的解析式为y=,将A的坐标为(3,4)代入y=nx+2得:n=,∴一次函数的解析式是y=x+2;
(2)在y=x+2中,令y=0,则x=﹣3,∴点B的坐标是(﹣3,0),∴OB=3,又AD=4,∴S△AOB=OBAD=×3×4=6,∴△AOB的面积为6;
(3)依题意,得:,解得:或,所以A(3,4),B(﹣6,﹣2),根据图示知,当x<﹣6或0<x<3时,nx≤﹣2.
故nx≤﹣2的解集是:x<﹣6或0<x<3.
【题目】某校对九年级(1)班全体学生进行体育测试,测试成绩分为优秀、良好、合格和不合格四个等级,根据测试成绩绘制的不完整统计图表如下:
九年级(1)班体育成绩频数分布表:
等级 | 分值 | 频数 |
优秀 | 90﹣100分 | |
良好 | 75﹣89分 | 13 |
合格 | 60﹣74分 | |
不合格 | 0﹣59分 | 9 |
根据统计图表给出的信息,解答下列问题:
(1)九年级(1)班共有多少名学生?
(2)体育成绩为优秀的频数是 ,合格的频数为 ;
(3)若对该班体育成绩达到优秀程度的3个男生和2个女生中随机抽取2人参加学校体育竞赛,恰好抽到1个男生和1个女生的概率是 .