题目内容
【题目】如图,梯形ABCD中,AD∥BC,∠C=90°,AB=AD=4,BC=6,以点A为圆心在梯形内画出一个最大的扇形,则阴影部分的面积为 .
【答案】10 ﹣4π
【解析】解:如图设扇形与BC相切于点E,连接AE,则AE⊥BC.
∵AD∥BC,∠C=90°,
∴∠D=∠C=∠AEC=90°,
∴四边形ADCE是矩形,
∴AD=CE=4,
∵BC=6,
∴BE=2,
在RT△AEB中,∵∠AEB=90°,AB=4,EB=2,
∴AE= =2 ,AB=2EB,
∴∠EAB=30°,
∵∠DAE=90°,
∴∠DAB=120°,
∴S阴=S梯形ABCD﹣ = (4+6) ﹣ =10 ﹣4π.
所以答案是10 ﹣4π
【考点精析】根据题目的已知条件,利用扇形面积计算公式的相关知识可以得到问题的答案,需要掌握在圆上,由两条半径和一段弧围成的图形叫做扇形;扇形面积S=π(R2-r2).
练习册系列答案
相关题目
【题目】A,B,C三名大学生竞选系学生会主席,他们的笔试成绩和口试成绩(单位:分)分别用了两种方式进行了统计,如表和图一:
A | B | C | |
笔试 | 85 | 95 | 90 |
口试 | 80 | 85 |
(1)请将表一和图一中的空缺部分补充完整.
(2)竞选的最后一个程序是由本系的300名学生进行投票,三位候选人的得票情况如图二(没有弃权票,每名学生只能推荐一个),请计算每人的得票数.
(3)若每票计1分,系里将笔试、口试、得票三项测试得分按4:3:3的比例确定个人成绩,请计算三位候选人的最后成绩,并根据成绩判断谁能当选.