题目内容
【题目】如图1,在正方形ABCD中,点P为AD延长线上一点,连接AC、CP,过点C作CF⊥CP交于C,交AB于点F,过点B作BM⊥CF于点N,交AC于点M.
(1)若AP=AC,BC=4,求S△ACP;
(2)若CP﹣BM=2FN,求证:BC=MC;
(3)如图2,在其他条件不变的情况下,将“正方形ABCD”改为“矩形ABCD”,且AB≠BC,AC=AP,取CP中点E,连接EB,交AC于点O,猜想:∠AOB与∠ABM之间有何数量关系?请说明理由.
【答案】(1)7;(2)证明见解析;(3)∠AOB=3∠ABM,理由见解析.
【解析】
(1)由正方形的性质得出AB=BC=CD=4,∠ADC=∠CDP=∠ABC=∠BCD=90°,由勾股定理求出AC,得出AP,即可求出S△ACP;
(2)在CF上截取NG=FN,连接BG,则CF﹣CG=2FN,证出∠BCF=∠DCP,由ASA证明△BCF≌△DCP,得出CF=CP,证出CG=BM,由SAS证明△ABM≌△BCG,得出∠AMB=∠BGC,因此∠BMC=∠BGF,由线段垂直平分线的性质得出BF=BG,得出∠BFG=∠BGF,因此∠BMC=∠CBM,即可得出结论;
(3)连接AE,先证出∠BCA=2∠PAE,再证明A、D、E、C四点共圆,由圆周角定理得出∠DCP=∠PAE,得出∠BCF=∠PAE,证出∠BCA=2∠ABM,然后由三角形的外角性质即可得出结论.
解:(1)∵四边形ABC是正方形,
∴AD∥BC,AB=BC=CD=4,∠ADC=∠CDP=∠ABC=∠BCD=90°,
∴AC==4,
∴AP=AC=×4=,
∴S△ACP=AP×CD=××4=7;
(2)在CF上截取NG=FN,连接BG,如图1所示:
则CF﹣CG=2FN,
∵CF⊥CP,
∴∠PCF=90°,
∴∠BCF=∠DCP,
在△BCF和△DCP中,,
∴△BCF≌△DCP(ASA),
∴CF=CP,
∵CP﹣BM=2FN,
∴CG=BM,
∵∠ABC=90°,BM⊥CF,
∴∠ABM=∠BCG,∠BFG=∠CBM,
在△ABM和△BCG中,,
∴△ABM≌△BCG(SAS),
∴∠AMB=∠BGC,
∴∠BMC=∠BGF,
∵GN=FN,BM⊥CF,
∴BF=BG,
∴∠BFG=∠BGF,
∴∠BMC=∠CBM,
∴BC=MC;
(3)∠AOB=3∠ABM;理由如下:
连接AE,如图2所示:
∵AC=AP,E是CP的中点,
∴AE⊥CP,∠PAE=∠CAE,
∵AD∥BC,
∴∠BCA=∠PAC=2∠PAE,
∵CF⊥CP,
∴∠PCF=90°,
∴∠BCF=∠DCP,
∵∠ADC=∠AEC=90°,
∴A、D、E、C四点共圆,
∴∠DCP=∠PAE,
∴∠BCF=∠PAE,
又∵∠ABM=∠BCF,
∴∠ABM=∠BCF=∠PAE,
∴∠BCA=2∠ABM,
∵∠AOB=∠BCF+∠BCA,
∴∠AOB=3∠ABM.