题目内容
【题目】已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②a﹣b+c<0;③4a+b+c=0;④抛物线的顶点坐标为(2,b);⑤当x<1时,y随x增大而增大.其中结论正确的是( )
A. ①②③ B. ①④⑤ C. ①③④ D. ③④⑤
【答案】C
【解析】∵抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标(4,0),
∴抛物线与x轴的另一个交点为(0,0),故①正确,
当x=﹣1时,y=a﹣b+c>0,故②错误,
∵,得4a+b=0,b=﹣4a,
∵抛物线过点(0,0),则c=0,
∴4a+b+c=0,故③正确,
∴y=ax2+bx=a(x+)2﹣=a(x+)2﹣=a(x﹣2)2﹣4a=a(x﹣2)2+b,
∴此函数的顶点坐标为(2,b),故④正确,
当x<1时,y随x的增大而减小,故⑤错误,
故选C.
练习册系列答案
相关题目