题目内容
【题目】如图,已知△ABC,求作一点P,使P到∠A的两边的距离相等,且PA=PB,下列确定P点的方法正确的是( )
A.P是∠A与∠B两角平分线的交点
B.P为∠A的角平分线与AB的垂直平分线的交点
C.P为A
D.AB两边上的高的交点
E.P为A
F.AB两边的垂直平分线的交点
【答案】B
【解析】解:∵点P到∠A的两边的距离相等,
∴点P在∠A的角平分线上;
又∵PA=PB,
∴点P在线段AB的垂直平分线上.
即P为∠A的角平分线与AB的垂直平分线的交点.
故选B.
【考点精析】解答此题的关键在于理解角平分线的性质定理的相关知识,掌握定理1:在角的平分线上的点到这个角的两边的距离相等; 定理2:一个角的两边的距离相等的点,在这个角的平分线上,以及对线段垂直平分线的性质的理解,了解垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等.
练习册系列答案
相关题目