题目内容

【题目】如图,AB是半圆O直径,半径OC⊥AB,连接AC,∠CAB的平分线AD分别交OC于点E,交 于点D,连接CD、OD,以下三个结论:①AC∥OD;②AC=2CD;③线段CD是CE与CO的比例中项,其中所有正确结论的序号是(
A.①②
B.①③
C.②③
D.①②③

【答案】B
【解析】解:∵OA=OD, ∴∠OAD=∠ODA,
∵AD为∠CAB的平分线,
∴∠CAD=∠OAD,
∴∠CAD=∠ODA,
∴AC∥OD,故选项①正确;
∵OC⊥AB,OA=OC,
∴△AOC为等腰直角三角形,
∴∠DOB=∠COD=∠BAC=45°,
∵∠ADC与∠AOC都对
∴∠ADC= ∠AOC=45°,
∴∠ADC=∠COD,又∠OCD=∠DCE,
∴△DCE∽△OCD,
= ,即CD2=CEOC,
故选项③正确;
的中点F,可得 =
=2
= =
∴AF=FC=CD,即AF+FC=2CD,
∵AF+FC>AC,
则2CD>AC,故选项②错误,
则正确的选项有:①③.
故选B

由OA=OD,利用等边对等角得到一对角相等,再由AD为角平分线得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行即可得到AC与OD平行,故选项①正确;由CO垂直于AB,OA=OC,得到三角形AOC为等腰直角三角形,得到∠CAB为45度,再由两直线平行同位角相等得到∠DOB为45度,即∠COD为45度,再由同弧所对的圆周角等于圆心角的一半得到∠ADC为45度,得到一对角相等,再由一对公共角,利用两对对应角相等的两三角形相似得到三角形CED与三角形OCD相似,由相似得比例可得出CD为CE与CO的比例中项,故选项③正确;取弧AC的中点F,得到弧AF与弧CF相等,再由弧AC=2弧CD,得到三条弧相等,利用等弧对等弦得到CF=AF=CD,即CF+AF=2CD,而CF+AF大于AC,可得出AC不等式2CD,故选项②错误.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网