题目内容

【题目】3根火柴棒搭成1个三角形,接着用火柴棒按如图所示的方式搭成2个三角形,再用火柴棒搭成3个三角形、4个三角形

(1)若这样的三角形有6个时,则需要火柴棒   根.

(2)若这样的三角形有n个时,则需要火柴棒   根.

(3)若用了2017根火柴棒,则可组成这样图案的三角形有   个.

【答案】9,2n+1,1008.

【解析】试题分析: (1)(2)按照图中火柴的个数填表即可当三角形的个数为:1、2、3、4时,火柴棒的根数分别为:3、5、7、9,由此可以看出当三角形的个数为n时,三角形个数增加(n-1)个,那么此时火柴棒的根数应该为:3+2(n-1)进而得出答案.
(3)构建方程即可解决问题;

试题解析:

(1)根据图形可得出:

当三角形的个数为1时,火柴棒的根数为3;

当三角形的个数为2时,火柴棒的根数为5;

当三角形的个数为3时,火柴棒的根数为7;

当三角形的个数为4时,火柴棒的根数为9;

当三角形的个数为5时,火柴棒的根数为11;

当三角形的个数为6时,火柴棒的根数为13;

由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.

(2)当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.

(3)由题意2n+1=2017,

∴n=1008

故答案为:9,2n+1,1008.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网