题目内容
【题目】如图1,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若B、P在直线a的异侧,BM直线a于点M,CN直线a于点N,连接PM、PN;
(1) 延长MP交CN于点E(如图2)。求证:△BPM≌△CPE;求证:PM=PN;
(2) 若直线a绕点A旋转到图3的位置时,点B、P在直线a的同侧,其它条件不变。此时
PM=PN还成立吗?若成立,请给予证明;若不成立,请说明理由;
(3) 若直线a绕点A旋转到与BC边平行的位置时,其它条件不变。请直接判断四边形MBCN
的形状及此时PM=PN还成立吗?不必说明理由。
【答案】(1)见解析;(2)成立;(3)成立
【解析】
试题分析:(1)①根据平行线的性质证得∠MBP=∠ECP再根据BP=CP,∠BPM=∠CPE即可得到;
②由△BPM≌△CPE,得到PM=PE则PM=ME,而在Rt△MNE中,PN=ME,即可得到PM=PN.
(2)证明方法与②相同.
(3)四边形MBCN是矩形,则PM=PN成立.
(1)①如图2:
∵BM⊥直线a于点M,CN⊥直线a于点N,
∴∠BMA=∠CNM=90°,
∴BM∥CN,
∴∠MBP=∠ECP,
又∵P为BC边中点,
∴BP=CP,
又∵∠BPM=∠CPE,
∴△BPM≌△CPE,
②∵△BPM≌△CPE,
∴PM=PE
∴PM=ME,
∴在Rt△MNE中,PN=ME,
∴PM=PN.
(2)成立,如图3,延长MP与NC的延长线相交于点E,
∵BM⊥直线a于点M,CN⊥直线a于点N,
∴∠BMN=∠CNM=90°
∴∠BMN+∠CNM=180°,
∴BM∥CN
∴∠MBP=∠ECP,
又∵P为BC中点,
∴BP=CP,
又∵∠BPM=∠CPE,
∴△BPM≌△CPE,
∴PM=PE,
∴PM=ME,
则Rt△MNE中,PN=ME,
∴PM=PN.
(3)如图4:
四边形M′BCN′是矩形,
根据矩形的性质和P为BC边中点,得到△M′BP≌△N′CP,
得PM′=PN′成立.即“四边形MBCN是矩形,则PM=PN成立”.