题目内容

【题目】如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A、B两点,与y轴交于点C,对称轴为直线x=﹣1,点B的坐标为(1,0),则下列结论:①AB=4;②b2﹣4ac>0;③ab<0;④a2﹣ab+ac<0,其中正确的结论有( )个.
A.1个
B.2个
C.3个
D.4个

【答案】C
【解析】解:∵抛物线的对称轴为直线x=﹣1,点B的坐标为(1,0), ∴A(﹣3,0),
∴AB=1﹣(﹣3)=4,所以①正确;
∵抛物线与x轴有2个交点,
∴△=b2﹣4ac>0,所以②正确;
∵抛物线开口向下,
∴a>0,
∵抛物线的对称轴为直线x=﹣ =﹣1,
∴b=2a>0,
∴ab>0,所以③错误;
∵x=﹣1时,y<0,
∴a﹣b+c<0,
而a>0,
∴a(a﹣b+c)<0,所以④正确.
故选C.
利用抛物线的对称性可确定A点坐标为(﹣3,0),则可对①进行判断;利用判别式的意义和抛物线与x轴有2个交点可对②进行判断;由抛物线开口向下得到a>0,再利用对称轴方程得到b=2a>0,则可对③进行判断;利用x=﹣1时,y<0,即a﹣b+c<0和a>0可对④进行判断.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网