题目内容
已知等腰△ABC中,AB=AC,若AB的垂直平分线与边AC所在直线相交所得锐角为40°,则等腰△ABC的底角∠B的大小为______.
①DE与线段AC相交时,如图1,∵DE是AB的垂直平分线,∠AED=40°,
∴∠A=90°-∠AED=90°-40°=50°,
∵AB=AC,
∴∠ABC=
(180°-∠A)=
(180°-50°)=65°;
②DE与CA的延长线相交时,如图2,∵DE是AB的垂直平分线,∠AED=40°,
∴∠EAD=90°-∠AED=90°-40°=50°,
∴∠BAC=180°-∠EAD=180°-50°=130°,
∵AB=AC,
∴∠ABC=
(180°-∠BAC)=
(180°-130°)=25°,
综上所述,等腰△ABC的底角∠B的大小为65°或25°.
故答案为:65°或25°.
∴∠A=90°-∠AED=90°-40°=50°,
∵AB=AC,
∴∠ABC=
1 |
2 |
1 |
2 |
②DE与CA的延长线相交时,如图2,∵DE是AB的垂直平分线,∠AED=40°,
∴∠EAD=90°-∠AED=90°-40°=50°,
∴∠BAC=180°-∠EAD=180°-50°=130°,
∵AB=AC,
∴∠ABC=
1 |
2 |
1 |
2 |
综上所述,等腰△ABC的底角∠B的大小为65°或25°.
故答案为:65°或25°.
练习册系列答案
相关题目