题目内容
【题目】问题引入:
(1)如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC= (用α表示);如图②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,则∠BOC= (用α表示)
拓展研究:
(2)如图③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC= (用α表示),并说明理由.
类比研究:
(3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC= .
【答案】(1)90°+α,120°+α;(2)120°-α;(3).
【解析】
试题分析:(1)如图①,∵∠ABC与∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∴∠OBC+∠OCB=(∠ABC+∠ACB),在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)
=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=90°+α;
如图②,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)
=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=120°+∠A=120°+α;
(2)如图③,在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)
=180°﹣(∠DBC+∠ECB)=180°﹣(∠A+∠ACB+∠A+ABC)=180°﹣(∠A+180°)=120°﹣α;
(3)在△OBC中,∠BOC=180°﹣(∠OBC+∠OCB)
=180°﹣(∠DBC+∠ECB)=180°﹣(∠A+∠ACB+∠A+ABC)=180°﹣(∠A+180°)
=.
练习册系列答案
相关题目