题目内容
【题目】如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1 , 再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2 , …,如此进行下去,得到四边形AnBnCnDn . 下列结论正确的有( )
①四边形A2B2C2D2是矩形;
②四边形A4B4C4D4是菱形;
③四边形A5B5C5D5的周长是 ,
④四边形AnBnCnDn的面积是 .
A.①②③
B.②③④
C.①②
D.②③
【答案】B
【解析】解:①连接A1C1 , B1D1 . ∵在四边形ABCD中,顺次连接四边形ABCD 各边中点,得到四边形A1B1C1D1 ,
∴A1D1∥BD,B1C1∥BD,C1D1∥AC,A1B1∥AC;
∴A1D1∥B1C1 , A1B1∥C1D1 ,
∴四边形A1B1C1D1是平行四边形;
∵AC丄BD,∴四边形A1B1C1D1是矩形,
∴B1D1=A1C1(矩形的两条对角线相等);
∴A2D2=C2D2=C2B2=B2A2(中位线定理),
∴四边形A2B2C2D2是菱形;
故本选项错误;②由①知,四边形A2B2C2D2是菱形;
∴根据中位线定理知,四边形A4B4C4D4是菱形;
故本选项正确;③根据中位线的性质易知,A5B5= A3B3= A1B1= AC,B5C5= B3C3= B1C1= BD,
∴四边形A5B5C5D5的周长是2× (a+b)= ,
故本选项正确;④∵四边形ABCD中,AC=a,BD=b,且AC丄BD,
∴S四边形ABCD=ab÷2;
由三角形的中位线的性质可以推知,每得到一次四边形,它的面积变为原来的一半,
四边形AnBnCnDn的面积是 ,
故本选项正确;
综上所述,②③④正确.
故选:B.