题目内容

【题目】如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].
(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.
(2)探究下列问题: ①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.
②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?

【答案】
(1)解:由题意可得出:y=x2﹣2x+1=(x﹣1)2

∴此函数图象的顶点坐标为:(1,0)


(2)解:①由题意可得出:y=x2+4x﹣1=(x+2)2﹣5,

∴将此函数的图象先向右平移1个单位,再向上平移1个单位后得到:y=(x+2﹣1)2﹣5+1=(x+1)2﹣4=x2+2x﹣3,

∴图象对应的函数的特征数为:[2,﹣3];

②∵一个函数的特征数为[2,3],

∴函数解析式为:y=x2+2x+3=(x+1)2+2,

∵一个函数的特征数为[3,4],

∴函数解析式为:y=x2+3x+4=(x+ 2+

∴原函数的图象向左平移 个单位,再向下平移 个单位得到


【解析】(1)根据题意得出函数解析式,进而得出顶点坐标即可;(2)①首先得出函数解析式,进而利用函数平移规律得出答案;②分别求出两函数解析式,进而得出平移规律.
【考点精析】利用二次函数的性质和二次函数图象的平移对题目进行判断即可得到答案,需要熟知增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网