题目内容
【题目】如图,为了美化环境,建设魅力呼和浩特,呼和浩特市准备在一个广场上种植甲、乙两种花卉经市场调查,甲种花卉的种植费用 (元)与种植面积之间的函数关系如图所示乙种花卉的种植费用为每平方米100元
(1)直接写出当和时,与的函数关系式.
(2)广场上甲、乙两种花卉的种植面积共,若甲种花卉的种植面积不少于,且不超过乙种花卉种植面积的2倍,那么应该怎样分配甲、乙两种花卉的种植面积才能使种植总费用最少?最少总费用为多少元?
【答案】(1);(2)应该分配甲、乙两种花卉的种植面积分别是800m2和400m2,才能使种植总费用最少,最少总费用为121000元.
【解析】
(1)由图可知y与x的函数关系式是分段函数,待定系数法求解析式即可.
(2)设种植总费用为W元,甲种花卉种植为am2,则乙种花卉种植(1200a)m2,根据实际意义可以确定a的范围,结合种植费用y(元)与种植面积x(m2)之间的函数关系可以分类讨论最少费用为多少.
解:(1)当0≤x≤300,设y=kx,将点(300,36000)代入得:
36000=300k,
∴k=120,
当x>300,设y=mx+n,将点(300,36000)及点(500,54000)代入
得,解得m=90,n=9000,
∴y=90x+9000,
∴,
(2)设种植总费用为W元,甲种花卉种植为am2,则乙种花卉种植(1200a)m2,
由题意得:,
∴200≤a≤800
当200≤a≤300时,W1=120a+100(1200a)=20a+120000.
∵20>0,W1随a增大而增大,
∴当a=200时.Wmin=124000元
当300<a≤800时,W2=90a+9000+100(1200a)=10a +129000.
∵-10<0,W2随a增大而减小,
当a=800时,Wmin=121000元
∵124000>121000
∴当a=800时,总费用最少,最少总费用为121000元.
此时乙种花卉种植面积为1200800=400(m2).
答:应该分配甲、乙两种花卉的种植面积分别是800m2和400m2,才能使种植总费用最少,最少总费用为121000元.
【题目】农八师石河子市某中学初三(1)班的学生,在一次数学活动课中,来到市游憩广场,测量坐落在广场中心的王震将军的铜像高度,已知铜像底座的高为3.5m.某小组的实习报告如下.请你计算出铜像的高(结果精确到0.1m)
实习报告2003年9月25日
题目1 | 测量底部可以到达的铜像高 | |||
测 得 数 据 | 测量项目 | 第一次 | 第二次 | 平均值 |
BD的长 | 12.3m | 11.7m | ||
测倾器CD的高 | 1.32m | 1.28m | ||
倾斜角 | α=30°56' | α=31°4' | ||
计 算 | ||||
结果 |
【题目】为了增强学生环保意识,我区举办了首届“环保知识大赛”,经选拔后有30名学生参加决赛,这30,名学生同事解答50个选择题,若每正确一个选择题得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:
组别 | 成绩x分 | 频数(人数) |
第1组 | 50≤x<60 | 3 |
第2组 | 60≤x<70 | 8 |
第3组 | 70≤x<80 | 13 |
第4组 | 80≤x<90 | a |
第5组 | 90≤x<100 | 2 |
(1)求表中a的值;
(2)请把频数分布直方图补充完整;
(3)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?
(4)第4组的同学将抽出3名对第一组3名同学进行“一帮一”辅导,则第4组的小宇与小强能同时抽到的概率是多少?