题目内容
【题目】如图,在平面直角坐标系中,抛物线,过点和点,与y轴交于点C,连接AC交x轴于点D,连接OA,OB
求抛物线的函数表达式;
求点D的坐标;
的大小是______;
将绕点O旋转,旋转后点C的对应点是点,点D的对应点是点,直线与直线交于点M,在旋转过程中,当点M与点重合时,请直接写出点M到AB的距离.
【答案】(1);(2);(3).(4)或.
【解析】
(1)将点和点代入函数解析式,解方程即可得出答案;
(2)根据抛物线与y轴交于点C,可求出点C坐标为,再根据点,用待定系数法求出直线AC的解析式,将y=0代入直线AC的解析式,即可求出点D的坐标;
(3)连接AB,根据点A、B、O三点的坐标可分别求出线段,,,根据勾股定理逆定理可得
;
(4)过点M作于点H,则MH的长为点M到AB的距离;分两种情况讨论,当点M与点重合且在y轴右侧时,根据旋转以及点M与点重合可得,可得,,,可得出,所以∽,易证;设,则,根据勾股定理得出,解出符合条件的的值,再根据面积法可得;当点M与点重合且在y轴左侧时用同样的方法可得出的值.
解:抛物线过点和点
解得:
抛物线的函数表达式为:
当时,
设直线AC解析式为:
解得:
直线AC解析式为
当时,,解得:
如图1,连接AB
,
,,
故答案为:.
过点M作于点H,则MH的长为点M到AB的距离.
如图2,当点M与点重合且在y轴右侧时,
绕点O旋转得即
,,
,,
即
,
∽
,
,即
设,则,
在中,
解得:舍去,
,
如图3,当点M与点重合且在y轴左侧时,
即
同理可证:∽
,
,即
设,则,
在中,
解得:,舍去
,
综上所述,点M到AB的距离为或.
练习册系列答案
相关题目