题目内容
【题目】如图,△ABC中,∠CAB=70°,在同一平面内,将△ABC绕点A旋转到△AB'C'的位置,使得C′C∥AB,则∠CAB'等于( )
A. 30°B. 25°C. 15°D. 10°
【答案】A
【解析】
先根据平行线的性质得∠ACC′=∠CAB=70°,再根据旋转的性质得AC=AC′,∠CAC′=∠BAB′,根据等腰三角形的性质和三角形内角和计算出∠CAC′=40°,所以∠BAB′=40°,然后计算∠CAB′=∠CAB﹣∠BAB′即可.
解:∵C′C∥AB,
∴∠ACC′=∠CAB=70°,
∵△ABC绕点A旋转到△AB'C'的位置,
∴AC=AC′,∠CAC′=∠BAB′,
∴∠ACC′=∠AC′C=70°,
∴∠CAC′=180°﹣70°﹣70°=40°,
∴∠BAB′=40°,
∴∠CAB′=∠CAB﹣∠BAB′=70°﹣40°=30°.
故选:A.
练习册系列答案
相关题目