题目内容
【题目】如图,在△ABC中,CD是AB边上的中线,E是CD的中点,过点C作AB的平行线交AE的延长线于点F,连接BF.
(1) 求证:CF=AD;
(2) 若CA=CB,∠ACB=90°,试判断四边形CDBF的形状,并说明理由.
【答案】(1)、证明过程见解析;(2)、正方形,理由见解析.
【解析】试题分析:(1)、根据CF∥AB可得∠CFE=∠DAE,∠FCE=∠ADE,根据E为中点可得CE=DE,则△ECF和△DEA全等,从而得出答案;(2)、根据AD=BD,则CF=BD,CF∥BD得出平行四边形,根据CD为AB边上的中线,CA=CB得出∠BDC=90°得出矩形,根据CD为等腰直角△ABC斜边上的中线得出CD=BD,即得到正方形.
试题解析:(1)、∵CF∥AB,∴∠CFE=∠DAE,∠FCE=∠ADE,∵E为CD的中点,∴CE=DE,
∴△ECF≌△DEA(AAS), ∴CF=AD,
(2)四边形CDBF为正方形,理由为:
∵AD=BD, ∴CF=BD; ∵CF=BD,CF∥BD,∴四边形CDBF为平行四边形,
∵CA=CB,CD为AB边上的中线,∴CD⊥AB,即∠BDC=90°,∴四边形CDBF为矩形,
∵等腰直角△ABC中,CD为斜边上的中线,∴CD=AB,即CD=BD,则四边形CDBF为正方形.
练习册系列答案
相关题目